Fractional order generalized thermoelasticity theories: A review
نویسندگان
چکیده
In the present article, a comprehensive review of relevant literature is presented to highlight the role of fractional calculus in the field of thermoelasticity. This review is devoted to the generalizations of the classical heat conduction equation and formulation of associated theories of fractional thermoelasticity. The recently developed fractional order thermoelastic models are described with their basic mathematical formulation and characteristic features of these models are illustrated. Finally, the paper concludes with a discussion on the future potential of the use of fractional order theory of thermoelasticity for the analysis of thermodynamical interactions in solid continuum. MSC: 26A33 • 74A15 • 80A20
منابع مشابه
Thermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects
In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...
متن کاملFractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties
In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...
متن کاملGeneralized Theory of Micropolar-fractional-ordered Thermoelasticity with Two-temperature
In this paper, a new theory of generalized micropolar thermoelasticity is derived by using fractional calculus. The generalized heat conduction equation in micropolar thermoelasticity has been modified with two distinct temperatures, conductive temperature and thermodynamic temperature by fractional calculus which depends upon the idea of the RiemannLiouville fractional integral operators. A un...
متن کاملFractional Thermoelasticity Model of a 2D Problem of Mode-I Crack in a Fibre-Reinforced Thermal Environment
A model of fractional-order of thermoelasticity is applied to study a 2D problem of mode-I crack in a fibre-reinforced thermal environment. The crack is under prescribed distributions of heat and pressure. The normal mode analysis is applied to deduce exact formulae for displacements, stresses, and temperature. Variations of field quantities with the axial direction are illustrated graphically....
متن کاملOn Plane Waves for Mode-I Crack Problem in Generalized Thermoelasticity
A general model of the equations of generalized thermoelasticity for an infinite space weakened by a finite linear opening Mode-I crack is solving. The material is homogeneous and has isotropic properties of elastic half space. The crack is subjected to prescribed temperature and stress distribution. The formulation is applied to generalized thermoelasticity theories, the Lord-Şhulman...
متن کامل